
Triangle Path Maximization Engine (Multi-Triangle / 3D Array)

What your code is trying to do (in plain terms)

You built a program that:

1. Generates many candidate “paths” through a triangle (row by row).

2. Ensures each candidate path obeys movement rules (constraints).

3. Applies each path to multiple triangles stored together (your 3D array).

4. Sums the values along the chosen path for each triangle.

5. Tracks the maximum total per triangle and stores all tied max results.

So your program is essentially a:

Multi-scenario constrained path optimizer
where each “triangle” is a separate scenario/dataset, but paths and scoring rules are
identical.

The data structure and why it’s 3D

Your triangle data (3D array)

You declare:

int[][][] triangle = new int[][][] {

 { {1}, {4}, {4} },

 { {2,3}, {6,8}, {5,6} },

 { {1,5,1}, {9,2,3}, {7,8,9} },

 { {15,7,9,12}, {5,9,15,8}, {2,7,11,8} },

 { {11,6,7,9,3}, {9,5,3,6,10}, {1,5,6,2,9} }

};

How to read it

Your structure is:

• First dimension = row (0..rowsTriangle-1)

• Second dimension = triangleIndex (which triangle/scenario)

• Third dimension = col inside that row

So the lookup:

triangle[row][triangleIndex][col]

Visual diagram of dimensions

triangle[row][tri][col]

row = which horizontal layer down the triangle

tri = which triangle (scenario) you’re evaluating

col = which position inside that row

Diagram: You have multiple triangles stacked side-by-side

You effectively store multiple triangles at once.

Example: 3 triangles (tri = 0, 1, 2)

Row 0

tri 0: [1] tri 1: [4] tri 2: [4]

Row 1

tri 0: [2,3] tri 1: [6,8] tri 2: [5,6]

Row 2

tri 0: [1,5,1] tri 1: [9,2,3] tri 2: [7,8,9]

…and so on.

So, conceptually:

ROW 0: (1) (4) (4)

ROW 1: (2 3) (6 8) (5 6)

ROW 2: (1 5 1) (9 2 3) (7 8 9)

ROW 3:(15 7 9 12) (5 9 15 8) (2 7 11 8)

ROW 4:(11 6 7 9 3) (9 5 3 6 10) (1 5 6 2 9)

 tri0 tri1 tri2

That’s exactly why a 3D structure is useful: you can run the same traversal logic across
multiple “worlds” (triangles).

The “path” concept

A path is the sequence of column indices you choose as you go row by row.

Example path string your generator produces:

"0,0,1,1,2"

This means:

• Row 0 → col 0

• Row 1 → col 0

• Row 2 → col 1

• Row 3 → col 1

• Row 4 → col 2

You apply this same path to each triangle.

Diagram: How a path maps to one triangle

Let’s use triangle #0 values (tri=0):

Row 0: [1]

Row 1: [2 3]

Row 2: [1 5 1]

Row 3: [15 7 9 12]

Row 4: [11 6 7 9 3]

Path: 0,0,1,1,2

Pick the elements:

• Row 0 col 0 → 1

• Row 1 col 0 → 2

• Row 2 col 1 → 5

• Row 3 col 1 → 7

• Row 4 col 2 → 7

Total = 1 + 2 + 5 + 7 + 7 = 22

Your code prints both:

• valuesTriangle = 1,2,5,7,7

• indexesTriangle = [0][tri][0],[1][tri][0],[2][tri][1]... style

Your movement constraints (what “valid path” means in your code)

You validate that the path respects adjacency and non-decreasing movement.

From your validation logic:

if (Math.abs(stepStore[h+1] - stepStore[h]) > 1) invalidIndex = true;

if (stepStore[h+1] < stepStore[h]) invalidIndex = true;

This effectively says:

1. You can’t jump more than 1 column left/right between adjacent rows.

2. You can’t decrease (you disallow moving left).

So allowed transitions are basically:

same index (k -> k) OR move right by 1 (k -> k+1)

That is a very realistic “gradual change” constraint in real applications (more on that
below).

The program flow (high level)

Phase 1: Generate candidate paths

You do a Monte-Carlo-ish search:

• Randomly generate many sequences (using rand)

• Reject invalid ones

• Store valid ones in Set<String> st so duplicates don’t build up

Important mental-model detail:

• You are not enumerating all paths deterministically.

• You are exploring the search space until “coverage feels enough”, controlled by:

while (cycles < permutations * 400)

So you run far beyond n^r theoretically, because random generation includes many
invalid or repeated candidates, and you want enough unique valid ones.

Diagram: generator as a funnel

Random sequences

 |

 v

[constraint checks]

 |

 v

valid paths only ---> stored in Set<String>

Phase 2: Convert each valid path to int[] moves

You take:

"0,0,1,1,2"

and convert into:

int[] nMoves = {0,0,1,1,2}

That becomes your move plan for triangle traversal.

Phase 3: Apply each move plan to each triangle

Your traversal loop:

for (int j = 0; j < triangle[0].length; j++) // j = triangle index

{

 for (int k : nMoves) // k = chosen col each row

 {

 total += triangle[i][j][k];

 i++;

 }

 i=0;

 // compare total to max[j], store outcome

}

So for each triangle j you:

• walk row by row using i

• take the col k from moves

• sum values

• then compare against max[j]

Phase 4: Keep max totals and ties per triangle

You track:

• max[j] = highest total found for triangle j

• outcomes[j][...] = strings describing each winning/tied path

When total beats max, you clear previous winners:

outcomes[j][index] = null; // clear

outcomes[j][0] = outcome; // new best

When total ties max, you add another entry.

So each triangle maintains a “leaderboard” of best paths.

Diagram: multi-triangle evaluation

Valid path list: P1, P2, P3, ... PN

For each path P:

 For each triangle T:

 total = sum along P in T

 if total > max[T]:

 max[T] = total

 reset winners

 store P

 else if total == max[T]:

 store P as tie

What your code outputs (and why it’s useful)

Your debug output provides:

• What path is being evaluated (subsetEntry)

• Which triangle is being processed (TRIANGLE j)

• Row-wise checks (and safety checks)

• Exact index used [row][triangle][col]

• Exact value taken

• Total

• Final maximum per triangle summary

• All tied max paths printed at end

This is essentially an audit trail. In real-world optimization, auditability is often as
important as the maximum result (especially in finance, operations, or compliance
contexts).

Real-life use cases that fit extremely closely (especially with multiple triangles)

The key feature is multiple triangles = multiple scenarios.

Your code becomes a “scenario engine”.

Below are close fits where the exact same structure appears naturally.

1) Multi-scenario financial strategy planner

Mapping

• triangleIndex j = market scenario

o scenario 0: recession

o scenario 1: baseline

o scenario 2: boom

• row i = time period (month/quarter/year)

• col k = strategy band (conservative → moderate → aggressive)

• triangle[i][j][k] = return score (or risk-adjusted score) for choosing band k at time i
in scenario j

Why the adjacency rule makes sense

Your rule “k stays same or increases by 1” models:

• You can’t wildly flip strategy each period

• You can only “shift gradually” (risk controls / mandate constraints)

Output meaning

• max[j] = best total return strategy for scenario j

• outcomes[j] = all strategies tied for best

2) Multi-plant manufacturing optimization

Mapping

• triangleIndex j = factory line / plant / configuration

• row i = stage (assembly step 1..N)

• col k = machine setting / tool choice band (small change allowed)

• value triangle[i][j][k] = yield or quality score

Adjacency rule = you can’t jump to a radically different setup without retooling.
Best path = best planned “configuration ramp” per factory.

3) Staffing levels over time across departments

Mapping

• triangleIndex j = department

• row i = week

• col k = staffing band (e.g., 0..i)

• value = productivity - cost - penalty

Adjacency rule = staff changes must be gradual; you can’t add/remove huge numbers
instantly.

Best path = best week-by-week staffing policy per department.

4) Robotics movement under layered risks

Mapping

• triangleIndex j = environment layer / risk map

• row i = forward progress step

• col k = lateral choice

• value = reward or negative cost

Multiple triangles = multiple assumptions:

• different weather

• different sensor noise model

• different hazard maps

Best path = safest/cheapest route per environment.

5) Product rollout schedule per region

Mapping

• triangleIndex j = region

• row = rollout phase

• col = rollout intensity band

• values = adoption/revenue score

Adjacency = you can’t jump from “pilot” to “full rollout” instantly.

Best path = best phased ramp-up per region.

Benefits of same-sized triangles vs different-sized triangles

This is really about what kind of real-world datasets you want to represent.

Same-sized triangles (what you have now)

Benefits

1. Simple control flow

o One rowsTriangle applies everywhere.

o You can run loops without checking triangle-specific height.

2. Direct comparability

o Scenario totals are comparable because they span the same number of
time steps / rows.

3. Predictable memory / array bounds

o Cleaner indexing.

o Fewer tricky bounds.

4. Cleaner debug and audit

o Output structure consistent across triangles.

Real-world interpretation

Same-sized triangles represent cases where every scenario has the same planning
horizon and the same number of decision stages.

Example:

• All forecast scenarios cover the same 5 years.

• All factories have the same number of stages.

• All departments plan for the same 12 weeks.

Different-sized triangles (feature you asked about)

What it enables

1. Different horizon scenarios

o Some triangles might represent 3 years, others 10 years.

2. Incomplete data

o Some scenarios may end early or be missing later measurements.

3. Real heterogeneity

o Factories have different numbers of stages.

o Regions have different rollout lengths.

o Projects have different lifetimes.

4. Better scenario realism

o Real world is messy; forcing uniformity often means padding with fake
values.

Why it matters technically

If triangles vary in height, then:

• Path generation must adapt:

o You either generate paths per triangle height

o or generate a “master path” and truncate to triangle height

• You must decide how to compare totals:

o raw totals aren’t fair if one triangle has 5 rows and another has 10 rows

o you might compare average per row, or compare only to common depth,
etc.

Real-world interpretation

Different-sized triangles represent systems where scenarios naturally have different
durations.

Example:

• one market scenario only forecasts reliably for 3 years, another for 10

• one manufacturing line has 6 stages, another 9

• one region is ready for rollout in 4 phases, another needs 7

Why supporting different sizes is valuable even if you keep same-sized now

Even if you continue using same-sized triangles for simplicity, adding support for
different-sized ones can make your code more “engine-like”:

• accepts arbitrary datasets

• can be used as a general library

• models incomplete, real inputs

• improves robustness (better bounds checks + clearer data contracts)

In practice, most serious scenario engines either:

• use jagged arrays (int[][][] where each triangle[row][j] can have different lengths),
or

• use lists of triangles (List<int[][]>), so each triangle is its own 2D structure.

Variable role map (so documentation readers understand your design)

Here’s a mapping of your important variables:

Triangle / structure

• triangle → data store: values per row, triangle, column

• rowsTriangle → number of rows in the triangle dataset

• numberTriangles → how many triangles exist (scenarios)

Path generation / storage

• st → Set storing unique path strings

• sj → builds path string like "0,0,1,1,2"

• stepStore → holds numeric moves while validating

• cycles, totalcycles → how long generator ran

Path evaluation

• valuesSet → array of unique path strings from set

• obtainMoves() → converts string path → int[] moves

• performMoves() → applies moves to each triangle and sums

Best result tracking

• max[j] → best total found for triangle j

• outcomes[j][..] → strings describing the best path(s)

• processedMax → prevents double-recording in tie logic

• count → index into outcomes where ties are stored

Diagram: end-to-end system overview

 +----------------------+

 | Random Path Maker |

 | (with constraints) |

 +----------+-----------+

 |

 v

 +---------------+

 | Set<String> st|

 | unique paths |

 +-------+-------+

 |

 v

 +-----------------------+

 | for each path string |

 | parse -> int[] |

 +-----------+-----------+

 |

 v

 +-----------------------------------+

 | for each triangle (scenario j) |

 | walk rows i=0..N-1 using moves |

 | sum triangle[i][j][k] |

 +----------------+------------------+

 |

 v

 +-------------------------------+

 | update max[j] and outcomes[j] |

 | store ties too |

 +-------------------------------+

